19th Nuclear Physics Workshop, Sept. 26-30, 2012 Kazimierz Dolny (Poland)

Quality of theoretical masses in various regions of the nuclear chart

Yu.A. Litvinov, GSI-Darmstadt

A. Sobiczewski, NCNR-Warsaw and GSI-Darmstadt

- 1. Introduction
- 2. Considered models
- 3. Accuracy of the models in their predictions of masses
- 4. Dependence of the accuracy of a model on the region of nuclei
- 5. Differences between predictions of different models outside the known region
- 6. Conclusions

1. Introduction

- Illustration of the quality of descrption of exp. masses by theor. models
- Exp. masses of 2011 (evaluated by G. Audi and Wang Meng)
- Motivation:
- 1) to see realistic models for making predictions in specific regions of nuclear chart
- 2) Possible help in improvement of the models

2. Considered models

Older and new + Global and local + Semi-empirical, macro-micro, purely micro (self-consistent) + Other

Global models: LSD, FRDM, TF, FRLDM – macro-micro; Sk-HFB21; G-HFB – purely micro Local models: LMZ – semi-empirical, HN (Warsaw) – macro-micro Other: DZ, KTUY, WS3.6, WS3.3

LSD: K. Pomorski and J. Dudek, PRC **67** (2003) 044316 FRDM, FRLDM: P. Möller et al., ADNDT **59** (1995) 185 TF: W.D. Myers and W.J. Świątecki, Nucl. Phys. A **601** (1996) 141 Sk-HFB21: S. Goriely et al., PRC **82** (2010) 035804 G-HFB: S. Goriely et al., PRL **102** (2009) 242501

LMZ: S. Liran, A. Marinov, N. Zeldes., PRC **62** (2000) 47301 HN (Warsaw): I. Muntian et al., Acta Phys. Pol. B **32** (2001) 691

DZ: J. Duflo and A.P. Zuker, PRC **52** (1995) R23 KTUY: H. Koura et al., Prog. Theor. Phys. **113** (2005) 305 WS3.6 (W6): Min Liu et al., PRC 84 (2011) 014333 WS3.3 (W3): Ning Wang et al., PRC (2010) 044304

3. Accuracy of the description

Table 1. The Rms, average discrepancy, $\overline{\delta}$, and maximum of the absolute values of the discrepancies, Max | δ | (all given in MeV), calculated for all ($Z, N \ge 8$), heavy ($Z \ge 82$, N ≥ 126), and heaviest (Z > 100) nuclei, with the use of the specified models. The year of publication of each model and the number of nuclei with measured mass in each of the considered regions, N_{nucl} , are also indicated.

Model	LMZ	HN	LSD	FRDM	TF	FRLDM	HFB21	GHFB	DZ	KTUY
	(2000)	(2001)	(2003)	(1995)	(1996)	(1995)	(2010)	(2009)	(1995)	(2005)
$N_{nucl}(Z \ge 8)$	-	-	2267	2294	2293	2294	2294	2294	2294	2294
Rms	-	-	0.600	0.645	0.629	0.768	0.574	0.784	0.374	0.690
$\bar{\delta}$	-	-	-0.028	-0.062	0.027	0.057	0.031	-0.108	-0.029	-0.048
Max δ	-	-	4.34	3.64	4.61	4.17	3.20	3.23	3.01	2.63
$N_{nucl}(Z \ge 82)$	297	297	289	297	296	297	297	297	297	297
Rms	0.202	0.358	0.352	0.455	0.476	0.731	0.484	1.057	0.333	0.986
$\bar{\delta}$	0.028	-0.133	0.163	0.131	0.340	0.562	0.132	-0.118	-0.011	-0.307
Max δ	1.12	1.13	1.43	1.95	1.75	1.92	1.33	3.23	3.01	2.38
$N_{\text{nucl}}(Z > 100)$	24	24	23	24	23	24	24	24	24	24
Rms	0.215	0.147	0.295	0.676	0.484	1.251	0.314	1.172	0.761	1.326
$\bar{\delta}$	-0.140	-0.063	-0.157	-0.525	0.457	1.218	-0.095	1.046	-0.151	1.303
Max $ \delta $	0.69	0.39	1.09	1.95	0.82	1.92	0.92	1.70	3.01	1.93

Conclusions

1. Masses of about 2.300 nuclei are already measured. One likes to describe them by theoretical models with a rather small number of adjustable parameters (~15).

2. Twelve models of different type have been checked by us. Rms is roughly in the range: 500 - 800 keV in the global region.

3. But this number is only very general. If we like to use a model in a specific region of nuclei, we should check it just in this region.

4. An interesting question is the predictive power of a given model.

5. Present accuracy of theoretical models (~ 600 keV) is much smaller than that of measurement (~ 50 keV). This is a real challenge for theoreticians.

6. One should stress a recent progress in the accuracy of purely microscopic (selfconsistent) models.